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Hard-sphere limit of soft-sphere model for granular materials: Stiffness dependence
of steady granular flow

Namiko Mitarai* and Hiizu Nakanishi†

Department of Physics, Kyushu University 33, Fukuoka 812-8581, Japan
~Received 29 October 2002; published 19 February 2003!

Dynamical behavior of steady granular flow is investigated numerically in the inelastic hard-sphere limit of
the soft-sphere model. We find distinctively different limiting behaviors for the two flow regimes, i.e., the
collisional flow and the frictional flow. In the collisional flow, the hard-sphere limit is straightforward; the
number of collisions per particle per unit time converges to a finite value and the total contact time fraction
with other particles goes to zero. For the frictional flow, however, we demonstrate that the collision rate
diverges as the power of the particle stiffness so that the time fraction of the multiple contacts remains finite
even in the hard-sphere limit, although the contact time fraction for the binary collisions tends to zero.
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I. INTRODUCTION

The interactions between grains in flowing granular m
terial are roughly classified into two types; the impulsi
contact ~collision! with the momentum exchange and th
sustained contact with the transmission of forces@1#. The
flow in which the impulsive contact is dominant is calle
collisional flow, while the flow where the sustained conta
dominates is calledfrictional flow. These two types of flow
may be found in a simple geometry such as granular flow
a slope. The grains stay at rest when the inclination ang
too small. If the inclination exceeds a critical angle, the m
terial starts flowing frictionally at first. The flow become
collisional when the inclination is large enough.

As for the collisional flow of granular material, its dynam
ics has some analogy with molecular fluid, and the kine
theories based on inelastic binary collisions of particles h
to some extent@2#. On the other hand, the frictional flow i
drastically different from the molecular fluid, and we ha
little understanding on it. Many models have been propo
for dense granular flows: For example, some models t
into account the effect of nonlocal force transmission wh
comes from the network of contacting grains@3#. In the ex-
periments, however, it is difficult to specify the nature
sustained contact in the dense flow.

For the simulations of granular dynamics, the followin
two models have been commonly used, i.e., the inela
hard-sphere model and the soft-sphere model.

In the inelastic hard-sphere model, the particles are r
and the collisions are thus instantaneous, therefore, its
namics can be defined through a few parameters that cha
terize a binary collision because there are no many-body
lisions @4#. The model is simple and there are very efficie
algorithms to simulate it@5#, but it describes basically only
the collisional flow@6# because the sustained contact is n
allowed. It is also known that the system often encount
what is called the inelastic collapse@7–10#; the infinite num-
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ber of collisions take place among a small number of p
ticles in a finite time, thus the dynamics cannot be continu
beyond that point without additional assumption.

On the other hand, in the soft-sphere model that is so
times called the discrete element method~DEM! in the
granular community@4,11#, the particles overlap during col
lision and the dynamics is defined through the forces ac
on the colliding particles. Collision takes finite time, and n
only binary collision but also many-body collision and su
tained contact between particles are possible, therefore,
the collisional and the frictional flows may realize in th
model. Many researches have been done on granular
down a slope using the DEM in both the collisional regim
and the frictional regime@12–14#.

In actual simulations, however, the stiffness consta
used in the soft-sphere model are usually much smaller t
the one appropriate for real material such as steel or g
ball @15# because of numerical difficulty. Therefore, som
part of sustained contact in simulations may be decompo
into binary collisions if stiffer particles are used. It is also n
clear that the frictional force in the sustained contact may
described by the same forces with the one suitable for
collisional events.

It is, therefore, important to examine how the system
havior may change as the stiffness constant increases in
soft-sphere model, or in other words, how the soft-sph
model converges to the inelastic hard-sphere model in
infinite stiffness limit. In this paper, we present the results
numerical simulations of the granular flow using the so
sphere model, and investigate the system behavior when
change the stiffness constant systematically with keeping
resulting restitution constant unchanged.

In Sec. II, we briefly summarize an inelastic hard-sph
model that is used for collisional granular flows. Then w
introduce a simple soft-sphere model for granular mate
and discuss how we take the hard-sphere limit keeping
restitution coefficient constant. In Sec. III, the simulation r
sults are shown. At first, the stiffness dependence of
steady state of a single particle rolling down a slope is p
sented to see how the inelastic collapse appears in the h
sphere limit. The collisional flow and the frictional flow ar
examined. We find that the interactions between particle
©2003 The American Physical Society01-1
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the collisional flow smoothly converge to binary collisions
inelastic hard-spheres, while those in frictional flow sho
nontrivial behavior; the behavior is also different from t
‘‘inelastic collapse’’ in the single particle system. The sum
mary and the discussion are given in Sec. IV.

II. HARD-SPHERE MODEL AND SOFT-SPHERE MODEL

In this section, we introduce the hard-sphere model
the soft-sphere model for granular material. For simplic
we consider a two-dimensional system and grains are m
eled by two-dimensional disks.

After showing the correspondence of parameters in
soft-sphere model to those of the hard-sphere model,
briefly summarize the phenomenon called inelastic collap
which is the singular behavior in the inelastic hard-sph
system. In the last part of this section, we discuss the limit
behavior of the soft-sphere model that corresponds to
inelastic collapse of the hard-sphere model.

A. Inelastic hard-sphere model

In hard-sphere models, collisions between particles or
tween a particle and a wall are considered to happen ins
taneously, and its dynamics is defined by the binary collis
rule. We consider the collision rule in terms of the norm
and tangential restitution coefficients and the sliding fricti
@6,16#.

Let us consider a collision between the two spheresi and
j of the diameterss i ands j and the massesmi andmj at the
contact positionsr i and r j , respectively. Prior to the colli-
sion, the disks have velocitiesci andcj and angular velocities
vi andvj . Then the relative velocity of the point of conta
v i j is given by

v i j 5~ci2cj !1n3S s i

2
vi1

s j

2
vj D , ~1!

where the normal vectorn5r i j /ur i j u5(nx ,ny,0) with r i j 5r i
2r j .

If v i j8 denotes the post-collisional relative velocity, th
collision rule for normal direction is

~n•v i j8 !52e~n•v i j !, ~2!

wheree is the normal restitution coefficient with 0<e<1.
In the case without sliding, the collision rule in the ta

gential direction is given by

~n3v i j8 !52b~n3v i j !, ~3!

where b is the tangential restitution coefficient with21
<b<1. The sliding is taken into account so that the tang
tial component of impulse does not exceedmun•Ju with the
Coulomb friction coefficientm, whereJ is the momentum
change of the particlei through the collision. Namely, whe
the momentum change of the particlei through the collision
rules~2! and~3! is Jnos, then (n3v i j8 ) is determined so tha

un3Ju5min~mun•Ju,un3Jnosu! ~4!
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is satisfied. The detailed description of the rule is given
Refs.@6,16#.

B. Soft-sphere model: DEM

The DEM, or the soft-sphere model@4,11#, is often used
to simulate the dynamics of granular materials. In the pres
work, we adopt the two-dimensional one with the linear el
tic force and dissipation. When the two disksi and j at po-
sitionsr i andr j with velocitiesci andcj and angular veloci-
tiesvi andvj are in contact, the force acting on the partic
i from the particlej is calculated as follows: The norma
velocity vn , the tangential velocityv t , and the tangentia
displacementut are given by

vn5n•v i j , v t5t•v i j , ~5!

ut5E
t0

t

v tdt, ~6!

wherev i j is given in Eq.~1!, andt5(2ny ,nx,0). Here,t0 is
the time when the two particles start to be in contact. Th
the normal forceFi j

n and the tangential forceFi j
t acting on

the particlei from the particlej are given by

Fi j
n 52MknS s i1s j

2
2Ur i jU D22Mhnvn , ~7!

Fi j
t 5min~ uhtu,muFnu!sgn~ht! ~8!

with

ht522Mktut22Mh tv t , ~9!

wherekn andkt are the elastic constants,hn andh t are the
damping parameters,m is the Coulomb friction coefficient
for sliding, andM5mimj /(mi1mj ) is the reduced mass.

C. Hard-sphere limit of soft-sphere model

When we adopt the linear dependence of the elastic
viscous force on the overlap and the normal relative veloc
as in Eq.~7!, we can calculate the duration of contacttc and
the restitution coefficient for a normal binary collisione @17#;
they are given by

tc5
p

A2kn2hn
2

~10!

and

e5expS 2
phn

A2kn2hn
2D , ~11!

respectively.
Neglecting the sliding friction and the variation ofn dur-

ing the contact, the half period of the oscillation in the ta
gential displacementut is estimated as@17#
1-2
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ts5
p

A6kt29h t
2

~12!

for the two-dimensional disks with the moment of inertiaI i

5mis i
2/8. Here, we choose the parameterskt andh t so that

the relationts5tc , or

A6kt29h t
25A2kn2hn

2 ~13!

is satisfied. Under this condition, the tangential restitut
coefficient is given by

b5exp~23h ttc!. ~14!

Equations~10! and ~11! can be rewritten as

hn5F 2kn

~p/ ln e!211
G 1/2

, ~15!

tc5Fp21~ ln e!2

2kn
G1/2

. ~16!

Using Eqs.~13!–~16!, we can take the inelastic hard-sphe
limit of this model for givene and b by taking thekn→`
limit; hn , h t , andkt are given by Eqs.~15!, ~14!, and~13!,
and the duration time of collisiontc goes to zero as Eq.~16!.

D. Inelastic collapse

It is well known that the inelastic hard-sphere system c
undergo theinelastic collapse, i.e., the phenomenon wher
infinite collisions take place within a finite period of time@7#.
The simplest example is the vertical bouncing motion o
ball under gravity, but it has been shown that the inela
collapse also occurs in higher-dimensional systems with
gravity @7–10#.

The inelastic collapse never occurs in the soft-sph
model because of the finite length of the collision time. Ho
ever, it is worth to discuss what will happen in the so
sphere model in the simple situation where the inelastic
lapse occurs in the hard-sphere model. First, let us cons
the vertical bouncing motion of a soft ball under gravity. W
assume the same force law between the ball and the floo
in Eqs.~7! and~8!, except that we replace 2M by the mass of
the ball. While the ball and the floor are in contact, the eq
tion of motion for the overlap of the ball and the floor,z, is
given by

z̈1knz1hnż5g, ~17!

with the acceleration of gravityg, where the dots represen
the time derivatives. One can show that, if the impact vel
ity v i is below a critical valuevc , which is O(1/Akn) for
large enoughkn , the ball stays in contact with the floor; fo
v i@vc , the restitution coefficientew can be considered as
constant. Therefore, for a given initial impact velocityv0,
the number of necessary collisionsnc for the ball to stay in
02130
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contact with the floor is roughly estimated by the conditi
ew

ncv0;vc , namely,nc; ln(vc /v0)/ln ew . Becausevc;1/Akn

for largekn , nc behaves as

nc} ln kn1const. ~18!

in the hard-sphere limit. Thusnc diverges logarithmically
whenkn→`, which corresponds to the inelastic collapse d
to gravity.

In the case without gravity, the inelastic collapse results
the ‘‘many-body collision’’ in the soft-sphere model. For e
ample, we consider three soft-spheres in one dimension
assume that the binary collision can be approximated by
collision law with a constant restitution coefficient. In th
situation where a particle goes back and forth between
two particles approaching each other, the inelastic colla
may take place in the hard-sphere model@8#; three balls lose
relative velocity completely in the limit of infinite collisions
In the soft-sphere model, however, when the interval
tween two collisions becomes smaller than the duration
contact tc , three balls are in contact at the same tim
namely, the three-body collision occurs; then they will fl
apart. The number of collisions before the three-body co
sion will also diverge logarithmically in the hard-sphere lim
becausetc}1/Akn.

On the other hand, one should note that a many-b
collision in the soft-sphere model does not necessarily re
in the inelastic collapse in the hard-sphere limit. Actually,
most of the cases, a many-body collision will be decompo
into a set of binary collisions in the hard-sphere limit.

III. SIMULATION RESULTS

In this section, we investigate the stiffness dependenc
granular material on a slope in the following three situatio
~i! a single particle rolling down a slope,~ii ! the dilute col-
lisional flow, and~iii ! the dense frictional flow. We focus o
the steady state in each situation and compare the simula
data with changingkn systematically. The particles ar
monodisperse in~ii !, while they are polydisperse in~iii ! in
order to avoid crystallization.

In the simulations, the parameters have been chose
give e5b50.7, m50.5 in the hard-sphere limit. All value
are nondimensionalized by the length units, the mass unit
m, and the time unitAs/g. Here,s is the diameter of the
largest particle in the system andm is the mass of that par
ticle. The second-order Adams-Bashforth method and
trapezoidal rule are used to integrate the equations for
velocity and the position, respectively@18#. Note that the
time step for integration,dt, needs to be adjusted astc be-
comes smaller. All the data presented in the paper are re
with dt5min(tc/100,1024). We have confirmed that the re
sults do not change fordt<tc/100 by calculating also with
dt5tc/50 anddt5tc/200 in the case of the single particle

A. A single particle rolling down a bumpy slope

Let us first consider a single particle rolling down
bumpy slope. It is known that the particle shows a stea
1-3
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motion for a certain range of the inclination angleu @19#. In
the simulations, we make the boundary rough by attach
the same particles with the rolling one to the slope with
spacing 0.002s ~see Fig. 1!. For the chosen parameters wi
the normal stiffnesskn52213105, the range ofu for which
steady motion is realized is 0.11&sinu&0.14 @13#. Here we
fix the inclination angle to sinu50.13. Figure 2 shows the
time evolution of the velocity in they direction, vy , with
kn52213105 ~solid line! andkn52173105 ~dashed line!. It
is shown thatvy behaves periodically; this period (Dt;4)
corresponds to the period for the particle to get past
particle at the floor. The period hardly depends on the s
ness.

In Fig. 3~a!, the kn dependence of the time averaged
netic energyE is shown. It is shown that the energy is a
increasing function of 1/kn in the softer region (1/kn
*1027), but no systematic 1/kn dependence ofE exists for
1/kn&1027. The average collision rate~number of collisions
per unit time! between the slope and the particle,Nw , shows
logarithmic dependence on 1/kn in the whole region@Fig.
3~b!#. From Fig. 3~c!, we also find that the average conta
time fraction with the slope,tw , is a decreasing function o
kn in the soft region, but it seems to approach a cons
value for large enoughkn .

The logarithmickn dependences ofNw and the constan
tw in large kn region agree with our previous analysis
‘‘inelastic collapse under gravity’’ in the soft-sphere model
Sec. II D. The motion of the particle in one period is
follows; when the particle comes to a bump~a particle at-
tached to the slope!, the particle jumps up, bounces on th
bump many times, loses the relative velocity, and finally ro
down keeping in contact with the bump. Therefore, the c
tact time fraction has a finite value even in the hard-sph

FIG. 1. A snapshot of a single ball rolling down a rough slop

FIG. 2. Time evolution ofvy with kn52213105 ~solid line! and
2173105 ~dashed line!.
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limit due to the rolling motion at the last part.Nw increases
logarithmically in the hard-sphere limit as has been expec
from Eq. ~18!.

B. Collisional flow

Next, we consider the steady state of the collisional flo
The system considered is shown in Fig. 4. The particles

.

FIG. 3. The stiffness dependence of~a! the time averaged ki-
netic energy of the particleE, ~b! the collision rate between the
slope and the particleNw , and~c! the contact time fraction betwee
the slope and the particletw .

FIG. 4. A snapshot of the dilute collisional flow.
1-4
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FIG. 5. The stiffness depen
dences of~a! the averaged kinetic
energy per one particleE, ~b! the
averaged collision rates betwee
particlesNc ~filled circles! and be-
tween particles and the floorNw

~open circles!, ~c! the averaged
contact time fractions betwee
particlestc ~filled circles! and be-
tween particles and the floortw

~open circles!, ~d! the estimated
multiple contact time fractions,tc

2Nctc ~filled circles! and tw

2Nwtw ~open circles!. The solid
and the dashed lines in~c! are pro-
portional to 1/Akn.
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monodisperse, and the slope is made rough as in the s
particle case. The periodic boundary condition is adopted
the flow direction (x direction!. The length of the slope is
L550.1 and the number of the particles attached to the s
is 50. The number of flowing particles is also 50, namely,
number of the particles per unit length along the slope
about 1. The inclination angle is set to be sinu50.45. The
initial configuration of particles is the row of 50 particles
rest with regular spacing in thex direction, but each particle
is at random height in they direction. After a short initial
transient, if the total kinetic energy fluctuates around a c
tain value, we consider it as the steady flow. All the d
were taken in this regime and averaged over the time pe
of 1500.

As can be seen in the snapshot, Fig. 4, the partic
bounce and the number of particles in contact is v
small. In Fig. 5~a!, the averaged kinetic energy per one p
ticle, E, is shown. ThoughE becomes larger as the particle
become softer in 1/kn*1025, the systematic dependence
E on kn disappears for large enoughkn (1/kn&1026) @20#.
The y dependence of the average number density and
flow speed in this region are also shown in Figs. 6~a! and
6~b!.

In Fig. 5~b!, the average collision rates between particl
Nc ~filled circles!, and between particles and the slope,Nw
~open circles!, per particle are plotted vs 1/kn . Both of them
stay roughly constant in the region whereE is almost con-
stant, 1/kn&1026. On the other hand, the average time fra
tions during which a particle is in contact with other pa
ticles, tc ~filled circles!, and in contact with the slope,tw
~open circles!, decrease systematically askn increases as
shown in Fig. 5~c!. Both the solid and the dashed lines a
proportional to 1/Akn, namely,tc decreases in the same ma
ner astc in Eq. ~16!. Actually, the collision time fractionstc
and tw converge toNctc andNwtw (tw is the duration of a
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normal collision of a particle and the floor@21#!, respec-
tively, in the hard-sphere limit. The differencestc2Nctc and
tw2Nwtw are plotted in Fig. 5~d! to show that they go to
zero very rapidly upon increasingkn . This means that the
interactions of the soft-sphere model in the collisional flo
regime converge to those of the inelastic hard-sphere m
with binary collisions.

If we look carefully, however, in the largekn region in
Fig. 5~c!, we can see slight deviation oftw from the dashed
lines; it decreases slower than 1/Akn. This tendency may
indicate thattw remains finite in the hard-sphere limit: Actu
ally, in the event-driven simulation of the hard-sphere mod
we always found the inelastic collapse as long as the res
tion constant between a particle and the floor is less than
This suggests thatNw should diverge andtw should remain
finite in the hard-sphere limit because of the inelastic c
lapse due to gravity. The slight deviation oftw from the
dashed line in Fig. 5~c! may be a symptom of it, while we
cannot see the logarithmic divergence inNw .

FIG. 6. The number density profile~a! and the velocity profile
~b! of the collisional flow.
1-5
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C. Frictional flow

Now we study the steady state of the dense frictional fl
We adopted the flat boundary with slope lengthL510.02
and imposed the periodic boundary condition in the fl
direction. In order to avoid crystallization, we used the po
disperse particles with the uniform distribution of diame
from 0.8 to 1.0. The number of particles in the system is 1
The inclination angleu is set to be sinu50.20 and the initial
condition is given in the similar way with the collisiona
flow. The ten rows of ten particles with regular spacing in t
x direction are at rest with large enough spacings betw
rows in they direction so that particles do not overlap; on
the particles in the top row are at random heights iny direc-
tion.

It turns out that the steady state is not unique and fluc
tion is large. Depending on the initial conditions, the p
ticles may flow with a different value of average kinetic e
ergy, or in some cases, the whole system stops. We pres
that this is mainly because the system is not large enou
Grains form a layer structure as in Fig. 7, and the flow
locity strongly depends on the configuration of particles
the bottom layer. The time evolutions of the kinetic ener
per particle,E(t), of three samples with different configura
tions in the bottom layer are shown in Fig. 8. Sample
shows stable behavior while sample 2 eventually stops a

FIG. 7. A snapshot of the dense frictional flow.
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running with lower energy for some time. Sample 3 sho
larger fluctuation with higher energy; the sudden change
E(t) in sample 3 results from the change in the configurat
of the bottom layer. This large fluctuation should be averag
out if we could simulate large enough system for lo
enough time, but the amount of computation is too la
especially for the system with stiff particles.

In order to make meaningful comparison out of the
largely fluctuating data with a variety of behaviors, we sel
simulation sequences that come from similar flowing beh
iors in the following way. First, we define the steady part
the time sequence in each of the samples as the part w
the width of the energy fluctuations is smaller than 0.45 o
the time period longer than 500. Second, we exclude the
whose averaged energy is out of the range@0.4,0.8# @22#.

Many of the excluded data by this criterion show qu
different flowing behaviors. We use only the data selec
from this criterion to calculate time averages of physic
quantities.

In the snapshot of the frictional flow, Fig. 7, most of th
particles seem to be in contact with each other and form
layer structure. They dependence of the average density a
the flow speed are shown in Figs. 9~a! and 9~b!, respectively.
We can see that the relative motion between layers is lar
at the bottom and very small in the bulk. The stiffness d
pendence of the average kinetic energyE is shown in Fig.

FIG. 9. The density~a! and velocity~b! profiles of the frictional
flow.
e,
s 2
FIG. 8. ~Color online! Time evolution of the kinetic energy per particle of three samples~sample 1: solid line, sample 2: dashed lin
sample 3: dotted line!. ~b! is the magnification of~a!. Sample 1 withkn52213105 shows steady behavior within the threshold. Sample
and 3 are withkn52273105. Sample 2 shows steady behavior for a while but finally stops.E(t) of sample 3 shoots up suddenly att
;1300 when one of the particles in the bottom layer runs on other particles.
1-6
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FIG. 10. The stiffness depen
dences of~a! the averaged kinetic
energyE, ~b! the averaged colli-
sion rates between particlesNc

~filled circles! and between par-
ticles and the floorNw ~open
circles!, ~c! the averaged contac
time fractions between particlestc

~filled circles! and between par-
ticles and the floor tw ~open
circles!, and ~d! the estimated
multiple contact time fractions,tc

2Nctc ~filled circles! and tw

2Nwtw ~open circles!. In ~b! the
solid line proportional tokn

0.4 is
shown as a guide to the eye.
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10~a!; the data are scattered due to the nonuniqueness o
steady state.

Nevertheless, the average collision rates show system
dependence as shown in Fig. 10~b!. Here, the definition of
Nc (tc) is the same as that for the collisional flow, namely
is the average collision rate~contact time fraction! between
particlesper particle in the system. On the other hand,Nw
(tw) is defined differently; it is the collision rate~the contact
time fraction! between the particles and the slopeper par-
ticle in the bottom layer, because other particles never tou
the slope.

In Fig. 10~b!, we can see thatNc ~filled circles! and Nw
~open circles! increase very rapidly askn becomes larger
they diverge as a power ofkn . This is quite different from
the behavior in the collisional flow in which they are almo
constant. Furthermore, this increase is faster than the l
rithmic divergence found in the single particle case@see Fig.
3~b!#.

The contact time fractions,tc ~filled circles! and tw ~open
circles!, decrease as shown in Fig. 10~c!. The main reason
why tc andtw decrease is thattc andtw decrease faster tha
Nc and Nw , namely, the contact time fractions estimat
from the duration of a binary collision,Nctc and Nwtw ,
continue to decrease. Actually, the decrease of the con
time fraction and the increase of the collision rate are nat
because a longer multiple contact breaks up into shorte
nary contacts as the particles become stiffer.

These contact time fractions,tc and tw , however, donot
converge toNctc andNwtw , respectively. As shown in Fig
10~d!, tc2Nctc ~filled circles! and tw2Nwtw ~open circles!
are very large as compared to those in the collisional fl
even in the stiffest region. The comparison of this with t
rapid convergence in the collisional flow regime@Fig. 5~d!#
indicates that there remains finite multiple contact time in
hard-sphere limit and the interaction in the frictional flo
02130
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can never be considered as many, or even infinite, insta
neous binary collisions. The particles experience the las
multiple contact even in the hard-sphere limit.

IV. SUMMARY AND DISCUSSION

The inelastic hard-sphere limit of granular flow has be
investigated numerically in the steady states of~i! a single
particle rolling down the slope,~ii ! the dilute collisional flow,
and ~iii ! the dense frictional flow. In~i!, it has been found
that the ‘‘inelastic collapse’’ between the particle and t
slope occurs in the hard-sphere limit due to gravity, and
contact time fraction between the particle and the slope
mains finite. In~ii !, the collision ratesNc andNw are almost
constant when particles are stiff enough. The contact t
fraction between particlestc approaches zero askn increase
in the same manner with the duration of contact for bina
collision, tc . This means that the interaction between p
ticles in the hard-sphere limit can be expressed by bin
collisions in the inelastic hard-sphere model. On the ot
hand, the decrease intw is slightly slower than 1/Akn in the
harder region, which can be a sign of the inelastic colla
between a particle and the slope.

In the case of the frictional flow~iii !, the situation is not
simple: Although the contact time fractionstc and tw de-
crease upon increasingkn , the collision ratesNc and Nw
increase as a power ofkn , which is faster than the logarith
mic divergence found in the single particle case~i!. The ori-
gin of this power divergence of collision rate does not se
to be simple because it is a property of the steady state, n
particular dynamical trajectory of the system.

The multiple contact time fraction may be estimated
tc2Nctc and tw2Nwtw . They were found to be quite larg
compared to those for the collisional flow, and seems to
main finite even in the infinite stiffness limit: This sugges
1-7
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that the interaction in the frictional flow can never be co
sidered as infinite number of binary collisions. Even in t
hard-sphere limit, particles experience the lasting multi
contact.

The non-negligible fraction of multiple contact in th
hard-sphere limit implies the existence of the network
contacting grains even though they are flowing. The mod
of dense flows should consider the effect of this lasting c
tacts.

Here we have investigated only the two cases, i.e.,
collisional flow and the frictional flow. The system shou
undergo the transition between the two flows if we chan
ry
i
.

he

,

02130
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continuously the parameters such as the inclination angle
roughness of the slope, or the density of particles. It is in
esting to investigate how the transition occurs by looking
the quantities measured in this paper, because their stiff
dependences are qualitatively different in the two flows.
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