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Hard-sphere limit of soft-sphere model for granular materials: Stiffness dependence
of steady granular flow
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Dynamical behavior of steady granular flow is investigated numerically in the inelastic hard-sphere limit of
the soft-sphere model. We find distinctively different limiting behaviors for the two flow regimes, i.e., the
collisional flow and the frictional flow. In the collisional flow, the hard-sphere limit is straightforward; the
number of collisions per particle per unit time converges to a finite value and the total contact time fraction
with other particles goes to zero. For the frictional flow, however, we demonstrate that the collision rate
diverges as the power of the particle stiffness so that the time fraction of the multiple contacts remains finite
even in the hard-sphere limit, although the contact time fraction for the binary collisions tends to zero.
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[. INTRODUCTION ber of collisions take place among a small number of par-
ticles in a finite time, thus the dynamics cannot be continued
The interactions between grains in flowing granular ma-beyond that point without additional assumption.

terial are roughly classified into two types; the impulsive ~On the other hand, in the soft-sphere model that is some-
contact (collision) with the momentum exchange and thetimes called the discrete element meth@EM) in the
sustained contact with the transmission of forek The  granular community4,11], the particles overlap during col-
flow in which the impulsive contact is dominant is called lision and the dynamics is defined through the forces acting
collisional flow while the flow where the sustained contact ©n the colliding particles. Collision takes finite time, and not
dominates is calledrictional flow. These two types of flow ©Nly binary collision but also many-body collision and sus-
may be found in a simple geometry such as granular flow o|Ilalned contact between particles are possible, therefore, both

a slope. The grains stay at rest when the inclination angle igg dCe(I)"II\S/IIgzaI rgggaizﬁefsrlﬁgvlalbzg\rlnvs dg?]aeyorﬁa“r;il;?a:r}ﬁjw
too small. If the inclination exceeds a critical angle, the ma- . Y 9

. . L ! down a slope using the DEM in both the collisional regime
terlz_il_starts flowing frlct_lonz_illy _at first. The flow becomes and the frictional regimé12—14,
collisional when the inclination is large enough.

for th lisional f ¢ | ol its d In actual simulations, however, the stiffness constants
As for the collisional flow of granular material, its dynam- o in the soft-sphere model are usually much smaller than

ics has some analogy with molecular fluid, and the kinetiGhe one appropriate for real material such as steel or glass
theories based on inelastic binary collisions of particles holg,y [15] because of numerical difficulty. Therefore, some
to some extenf2]. On the other hand, the frictional flow is part of sustained contact in simulations may be decomposed
drastically different from the molecular fluid, and we haveinto binary collisions if stiffer particles are used. It is also not
little understanding on it. Many models have been proposed|ear that the frictional force in the sustained contact may be
for dense granular flows: For example, some models takgescribed by the same forces with the one suitable for the
into account the effect of nonlocal force transmission whichcollisional events.

comes from the network of contacting grair&d. In the ex- It is, therefore, important to examine how the system be-
periments, however, it is difficult to specify the nature of havior may change as the stiffness constant increases in the
sustained contact in the dense flow. soft-sphere model, or in other words, how the soft-sphere

For the simulations of granular dynamics, the following model converges to the inelastic hard-sphere model in the
two models have been commonly used, i.e., the inelastiinfinite stiffness limit. In this paper, we present the results of
hard-sphere model and the soft-sphere model. numerical simulations of the granular flow using the soft-

In the inelastic hard-sphere model, the particles are rigidphere model, and investigate the system behavior when we
and the collisions are thus instantaneous, therefore, its dyhange the stiffness constant systematically with keeping the
namics can be defined through a few parameters that chara@sulting restitution constant unchanged.
terize a binary collision because there are no many-body col- In Sec. Il, we briefly summarize an inelastic hard-sphere
lisions [4]. The model is simple and there are very efficientmodel that is used for collisional granular flows. Then we
algorithms to simulate if5], but it describes basically only introduce a simple soft-sphere model for granular material
the collisional flow[6] because the sustained contact is notand discuss how we take the hard-sphere limit keeping the
allowed. It is also known that the system often encountersestitution coefficient constant. In Sec. Ill, the simulation re-
what is called the inelastic collapfe-10]; the infinite num-  sults are shown. At first, the stiffness dependence of the

steady state of a single particle rolling down a slope is pre-

sented to see how the inelastic collapse appears in the hard-
*Electronic address: namiko@stat.phys.kyushu-u.ac.jp sphere limit. The collisional flow and the frictional flow are
TElectronic address: naka4scp@mbox.nc.kyushu-u.ac.jp examined. We find that the interactions between particles in
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the collisional flow smoothly converge to binary collisions of is satisfied. The detailed description of the rule is given in
inelastic hard-spheres, while those in frictional flow showRefs.[6,16].

nontrivial behavior; the behavior is also different from the

“inelastic collapse” in the single particle system. The sum- B. Soft-sphere model: DEM

mary and the discussion are given in Sec. IV.
y g The DEM, or the soft-sphere modgt,11], is often used

to simulate the dynamics of granular materials. In the present
work, we adopt the two-dimensional one with the linear elas-

In this section, we introduce the hard-sphere model andi¢ force and dissipation. When the two diskand] at po-
the soft-sphere model for granular material. For simplicity,sitionsr; andr; with velocitiesc; andc; and angular veloci-
we consider a two-dimensional system and grains are modies w; andw; are in contact, the force acting on the particle
eled by two-dimensional disks. i from the particlej is calculated as follows: The normal

After showing the correspondence of parameters in th&elocity v, the tangential velocity, and the tangential
soft-sphere model to those of the hard-sphere model, weisplacement, are given by
briefly summarize the phenomenon called inelastic collapse,
which is the singular behavior in the inelastic hard-sphere
system. In the last part of this section, we discuss the limiting
behavior of the soft-sphere model that corresponds to the U= ft 6)

t

inelastic collapse of the hard-sphere model. Ovtdt’

Il. HARD-SPHERE MODEL AND SOFT-SPHERE MODEL

vp=n-vij, v=toy, 5

A. Inelastic hard-sphere model wherew;; is given in Eq.(1), andt=(—ny,n,,0). Heret, is

In hard-sphere models, collisions between particles or bet_he time when the two particles start to be in contact. Then

n H t H
tween a particle and a wall are considered to happen instaﬁEe nortmrlal.f?rcd:tig] and ihel .tangen'tlal fErCEii acting on
taneously, and its dynamics is defined by the binary collisiorf "€ Particlel from the particle are given by
rule. We consider the collision rule in terms of the normal

and tangential restitution coefficients and the sliding friction Finj —oM kn( oitop ry ) —2M 0, 7)
[6,16]. 2 ’
Let us consider a collision between the two sphérasd

j of the diametersr; andoj and the masseas; andm; at the F}J—=min(|ht|,,u|Fn|)sgr(ht) (8)

contact positions; andr;, respectively. Prior to the colli-

sion, the disks have velocitiesandc; and angular velocities  with

w; andw; . Then the relative velocity of the point of contact

vj; is given by h,=—2Mk;u;—2M nvy, 9

PPN gi g wherek,, andk; are the elastic constantg,, and »; are the

vij =(G=¢)nx 29t wJ)’ @ damping parameterg; is the Coulomb friction coefficient

for sliding, andM =mm; /(m;+m;) is the reduced mass.
where the normal vectar=r;; /|r;;|=(ny,ny,0) with r;=r,
R o ) ] C. Hard-sphere limit of soft-sphere model
If vj; denotes the post-collisional relative velocity, the

collision rule for normal direction is When we adopt the linear dependence of the elastic and

viscous force on the overlap and the normal relative velocity

(n-vi)=—e(n-v;), (2)  asinEq.(7), we can calculate the duration of contagtand
N ! the restitution coefficient for a normal binary collisief17];
wheree is the normal restitution coefficient with<fe<1. they are given by
In the case without sliding, the collision rule in the tan-
gential direction is given by m (10)

(nXv{;)=—B(nXvy), ()
. . - . . and
where B is the tangential restitution coefficient with 1
<pB=1. The sliding is taken into account so that the tangen-
tial component of impulse does not exceefh- J| with the e= exp{ - l) ,
Coulomb friction coefficientu, whereJ is the momentum V2K, — nnz
change of the particlethrough the collision. Namely, when
the momentum change of the particléhrough the collision  respectively.
rules(2) and(3) is J"°%, then (1Xv};) is determined so that Neglecting the sliding friction and the variation ofdur-
ing the contact, the half period of the oscillation in the tan-
[nx J|=min(u|n-J|,|nxJ"°F) (4)  gential displacemen, is estimated ag17]

11
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- contact with the floor is roughly estimated by the condition

To=———— (12 e\r,‘fuo~vc, namely,n.~In(v:/vg)/ine,. Because .~ 1/\/k—n
VBki— 97 for largek,, n. behaves as

for the two-dimensional disks with the moment of ineitja

A n.<Ink,+ const. (19
=m;o{/8. Here, we choose the parametkysind », so that
the relationzs=7¢, or in the hard-sphere limit. Thus, diverges logarithmically
whenk,— o0, which corresponds to the inelastic collapse due

6k~ 977 =2k~ 77 (13} to gravity.
In the case without gravity, the inelastic collapse results in
is satisfied. Under this condition, the tangential restitutionthe “many-body collision” in the soft-sphere model. For ex-

coefficient is given by ample, we consider three soft-spheres in one dimension and
assume that the binary collision can be approximated by the
B=exp(—3n7c). (14  collision law with a constant restitution coefficient. In the
situation where a particle goes back and forth between the
Equations(10) and (11) can be rewritten as two particles approaching each other, the inelastic collapse

" may take place in the hard-sphere mdd] three balls lose

2k, relative velocity completely in the limit of infinite collisions.
M= 5 (15  In the soft-sphere model, however, when the interval be-
(mfine)*+1 tween two collisions becomes smaller than the duration of
) o1/ contact 7., three balls are in contact at the same time,
|7 t(ne) (16) namely, the three-body collision occurs; then they will fly
¢ 2k, apart. The number of collisions before the three-body colli-

sion will also diverge logarithmically in the hard-sphere limit
Using Eqgs.(13—(16), we can take the inelastic hard-spherebecauser,1/\/k,,.

limit of this model for givene and B by taking thek,,—« On the other hand, one should note that a many-body
limit; »,, ., andk; are given by Eqgs(15), (14), and(13), collision in the soft-sphere model does not necessarily result
and the duration time of collision, goes to zero as E¢16).  in the inelastic collapse in the hard-sphere limit. Actually, in

most of the cases, a many-body collision will be decomposed

D. Inelastic collapse into a set of binary collisions in the hard-sphere limit.

It is well known that the inelastic hard-sphere system can
undergo theinelastic collapsei.e., the phenomenon where
infinite collisions take place within a finite period of tirfi€]. In this section, we investigate the stiffness dependence of
The simplest example is the vertical bouncing motion of agranular material on a slope in the following three situations:
ball under gravity, but it has been shown that the inelastigj) 5 single particle rolling down a slopéi) the dilute col-
collapse also occurs in higher-dimensional systems withoUisional flow, and(iii) the dense frictional flow. We focus on
gravity [7-10. the steady state in each situation and compare the simulation

The inelastic collapse never occurs in the soft-sphergjata with changingk, systematically. The particles are
model because of the finite |ength of the collision time. HOW-monodisperse |m”)' while they are po'ydisperse |(1||) in

ever, it is worth to discuss what will happen in the soft- grder to avoid crystallization.

sphere model in the simple situation where the inelastic col- |y the simulations, the parameters have been chosen to
lapse occurs in the hard-sphere model. First, let us considgfiye e= =0.7, x=0.5 in the hard-sphere limit. All values
the vertical bouncing motion of a soft ball under gravity. We are nondimensionalized by the length uait the mass unit
assume the same force law between the ball and the floor &5 and the time unit/a/g. Here, o is the diameter of the

in Egs.(7) and(8), except that we replace\® by the mass of  |argest particle in the system amdis the mass of that par-
the ball. While the ball and the floor are in contact, the equasjcle. The second-order Adams-Bashforth method and the
tion of motion for the overlap of the ball and the floayis  rapezoidal rule are used to integrate the equations for the
given by velocity and the position, respective[\t8]. Note that the
time step for integrationdt, needs to be adjusted as be-
comes smaller. All the data presented in the paper are results

] ) ) with dt=min(7/100,10 ). We have confirmed that the re-
with the acceleration of gravitg, where the dots represent ¢ its do not change falt< /100 by calculating also with
the time derivatives. One can show that, if the impact velocy;— 7./50 anddt=7./200 in the case of the single particle.

ity v; is below a critical valuev., which is O(1/\k,) for
large enouglk,,, the ball stays in contact with the floor; for
vi>v., the restitution coefficieng, can be considered as a
constant. Therefore, for a given initial impact velocity, Let us first consider a single particle rolling down a
the number of necessary collisions for the ball to stay in  bumpy slope. It is known that the particle shows a steady

I1l. SIMULATION RESULTS

z+knz+ 7,2=0, 17

A. A single particle rolling down a bumpy slope
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Y (a) e
0.065 | .
Lﬂ .
0064f * . "
FIG. 1. A snapshot of a single ball rolling down a rough slope. 10'—10 ' 16—8 ' 16—6 107
motion for a certain range of the inclination angl¢19]. In Vs
the simulations, we make the boundary rough by attaching (b)
the same particles with the rolling one to the slope with the 10 -
spacing 0.002 (see Fig. 1 For the chosen parameters with "
the normal stiffnes&,=2"1x 10", the range o® for which 8 * .
steady motion is realized is 0.£5in 6<0.14[13]. Here we Zi .
fix the inclination angle to sif=0.13. Figure 2 shows the 6 ° .
time evolution of the velocity in the direction, v, with .
k,=2 1x10° (solid line) andk,=2"x 10° (dashed ling It 4 .
is shown thatv, behaves periodically; this period\{~4) 10'_10 ' 16‘8 ' 16—6 ' 107
corresponds to the period for the particle to get past one Uk
particle at the floor. The period hardly depends on the stiff- "
ness. (c) 0.14
In Fig. 3a@), thek,, dependence of the time averaged ki- *
netic energyk is shown. It is shown that the energy is an 012 |
increasing function of X, in the softer region (X, ) .
=10 7), but no systematic k/ dependence dE exists for <
1k,=10"". The average collision rat@umber of collisions 0.1 )
per unit timg between the slope and the partid\,, shows Vet '
logarithmic dependence onkl/in the whole regionFig. *
3(b)]. From Fig. 3c), we also find that the average contact 0.08 00108 300 10

time fraction with the slopet,,, is a decreasing function of

k, in the soft region, but it seems to approach a constant

value for large enougk;, . FIG. 3. The stiffness dependence (@j the time averaged ki-
The logarithmick, dependences dfl,, and the constant netic energy of the particl&€, (b) the collision rate between the

ty in large k, region agree with our previous analysis of slope and the particld,,, and(c) the contact time fraction between

“inelastic collapse under gravity” in the soft-sphere model in the slope and the particlg, .

Sec. II D. The motion of the particle in one period is as

follows; when the particle comes to a bun( particle at- o : =

tached to the slopethe particle jumps up, bounces on the :c?gr?]rutzhm(lig)lly in the hard-sphere limit as has been expected

bump many times, loses the relative velocity, and finally rolls q- '

down keeping in contact with the bump. Therefore, the con-

tact time fraction has a finite value even in the hard-sphere

1k,

limit due to the rolling motion at the last paifl,, increases

B. Collisional flow

Next, we consider the steady state of the collisional flow.
0.6 - - - - The system considered is shown in Fig. 4. The particles are

04 | 1. o ©

490 492 494 496 498 500

FIG. 2. Time evolution ob,, with k,=2"1x 10" (solid line) and
27% 10° (dashed ling FIG. 4. A snapshot of the dilute collisional flow.
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(@ ————— )
30 | ] 10k * o oo o

S

Lu20 i 1 = FIG. 5. The stiffness depen-
. 205t | dences ofa) the averaged kinetic

Z energy per one particlg, (b) the
° averaged collision rates between
particlesN (filled circles and be-
tween particles and the flody,,
(open circley (c) the averaged
contact time fractions between
- particlest, (filled circles and be-
Of ¢ o 5 ¢ o 0 o, 1 tween particles and the floa,
(open circleg, (d) the estimated
multiple contact time fractiond,,
. —N.7. (filled circles and t,
-0.005 | 1 — N, (open circles The solid
and the dashed lines (i) are pro-
portional to 14k,.

10 | ‘ 1
b o ® o o o o °® 000000000

N . N . 0 . . . .
10 10° 10* 1072 0% 10° 10* 1072
1k, 1k,

()

C

tw

ty—Ny Ty

te,

tc_NcTc s

10 10° 10* 1072 0.0 10 10 10* 107
Vky, Vkn

monodisperse, and the slope is made rough as in the singt®rmal collision of a particle and the flog1]), respec-
particle case. The periodic boundary condition is adopted inively, in the hard-sphere limit. The differencgs- N.7. and
the flow direction & direction. The length of the slope is t,—N,7, are plotted in Fig. &) to show that they go to
L="50.1 and the number of the particles attached to the slopgero very rapidly upon increasink},. This means that the
is 50. The number of flowing particles is also 50, namely, thenteractions of the soft-sphere model in the collisional flow

number of the particles per unit length along the slope isegime converge to those of the inelastic hard-sphere model
about 1. The inclination angle is set to be 8#0.45. The  \yith pinary collisions.

initial configuration of particles is the row of 50 particles at

rest with regular spacing in thedirection, but each patrticle Fig. 5(c), we can see slight deviation of from the dashed

is at random height in thg direction. After a short initial lines; it decreases slower thanJk[. This tendency may

transient, if the total kinetic energy fluctuates around a Cer: dicate that,, remains finite in the hard-sphere limit: Actu-

ﬁgev,;l;igr’] methﬁgr;zgi?r:eltaﬁz :\l/eer?gesg%\tfr\/\{hél':ir;hee p(larlit(? lly, in the event-drive_n simu_lation of the hard-sphere modgl,
of 1500 ve always found the melastlc_: collapse as Iong_as the restitu-
As c;':m be seen in the snapshot, Fig. 4, the particlet|on constant between a particle and the floor is less than 1.

' N This suggests thatl,, should diverge and,, should remain

bounce and the number of particles in contact is Very. e in the hard-sph limit b ¢ the inelasti |
small. In Fig. %a), the averaged kinetic energy per one par- Inite in the har -sphere |m|t_ ecause o the inelastic col-
: ’ ' lapse due to gravity. The slight deviation gf from the

ticle, E, is shown. Thougle becomes larger as the particles dashed line in Fig. &) may be a symptom of It, while we
become softer in k,=10"°, the systematic dependence of i the | 9. it 'yd' y gN '

E on k,, disappears for large enouddy (1/k,=<10 ©) [20]. cannot see the fogarithmic divergencenty .
The y dependence of the average number density and the

If we look carefully, however, in the largk, region in

flow speed in this region are also shown in Fig&)@nd @ 8 - , (b) 8 : —
6(b). L : - §

In Fig. 5(b), the average collision rates between particles, 61 ] 6| ¢
N, (filled circles, and between particles and the slopk, i ] .
(open circley per particle are plotted vsK{. Both of them o 4 - 4 J
stay roughly constant in the region wheteis almost con- .
stant, 1k,=<10 6. On the other hand, the average time frac- 5 ol .

tions during which a particle is in contact with other par-
ticles, t; (filled circles, and in contact with the slope,, :
(open circley decrease systematically &g increases as 0_61 0.4 2' 3 "1
shown in Fig. %c). Both the solid and the dashed lines are
proportional to 1{k,, namely. decreases in the same man-
ner asr. in Eq. (16). Actually, the collision time fractions, FIG. 6. The number density profil@) and the velocity profile
andt,, converge tdN.7. andN,,7,, (7, is the duration of a (b) of the collisional flow.

n Vy
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(@ (b)
8 8 |
L e » | v
6 \; 6l '
4 i 4l !
_“‘/ [ H
2 ? 21 i
0 . — 0
00 05 10 15 0.5 1.0 15
n Vy

FIG. 9. The densitya) and velocity(b) profiles of the frictional
flow.

FIG. 7. A snapshot of the dense frictional flow.
running with lower energy for some time. Sample 3 shows

C. Frictional flow larger fluctuation with higher energy; the sudden change of
Now we study the steady state of the dense frictional row.E(t) in sample 3 result's from the chapge in the configuration
We adopted the flat boundary with slope lendth10.02 of th_e bottom Iayer._Thls large fluctuation should be averaged
and imposed the periodic boundary condition in the flowPut if we could simulate large enough system for long
direction. In order to avoid crystallization, we used the poly-€nough time, but the amount of computation is too large
disperse particles with the uniform distribution of diameterespecially for the system with stiff particles.
from 0.8 to 1.0. The number of particles in the system is 100. In order to make meaningful comparison out of these
The inclination angle is set to be si®=0.20 and the initial  1argely fluctuating data with a variety of behaviors, we select
condition is given in the similar way with the collisional Simulation sequences that come from similar flowing behav-
flow. The ten rows of ten particles with regular spacing in theiors in the following way. First, we define the steady part of
x direction are at rest with large enough spacings betweethe time sequence in each of the samples as the part where
rows in they direction so that particles do not overlap; only the width of the energy fluctuations is smaller than 0.45 over
the particles in the top row are at random heighty direc-  the time period longer than 500. Second, we exclude the data
tion. whose averaged energy is out of the raf@«,0.9 [22].

It turns out that the steady state is not unique and fluctua- Many of the excluded data by this criterion show quite
tion is large. Depending on the initial conditions, the par-different flowing behaviors. We use only the data selected
ticles may flow with a different value of average kinetic en-from this criterion to calculate time averages of physical
ergy, or in some cases, the whole system stops. We presumeantities.
that this is mainly because the system is not large enough: In the snapshot of the frictional flow, Fig. 7, most of the
Grains form a layer structure as in Fig. 7, and the flow ve-articles seem to be in contact with each other and form a
locity strongly depends on the configuration of particles inlayer structure. Thg dependence of the average density and
the bottom layer. The time evolutions of the kinetic energythe flow speed are shown in FiggaPand 9b), respectively.
per particle E(t), of three samples with different configura- We can see that the relative motion between layers is largest
tions in the bottom layer are shown in Fig. 8. Sample 1lat the bottom and very small in the bulk. The stiffness de-
shows stable behavior while sample 2 eventually stops aftggendence of the average kinetic enefgys shown in Fig.

(@) : (b) 2.0
20 t |
sample 3 —> ‘

i {
= sample3 — = é‘sample1 !
=1 ot 1.0 : l

10 +
sample 1, sample 2
R : 00 L1 — - 2
0 1000 2000 0 1000 2000

t t

FIG. 8. (Color onlineg Time evolution of the kinetic energy per particle of three samfdasnple 1: solid line, sample 2: dashed line,
sample 3: dotted line (b) is the magnification ofa). Sample 1 withk, =2~ X 10° shows steady behavior within the threshold. Samples 2
and 3 are withk,=2"7x10°. Sample 2 shows steady behavior for a while but finally st@&gs) of sample 3 shoots up suddenly tat
~1300 when one of the particles in the bottom layer runs on other particles.
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(@ 1.0 (b)10000
0.8 ) 1000 F ek
06 * . . = e FIG. 10. The stiffness depen-
S 04l . _ 100} C e dences ofa) the averaged kinetic
: zZ L energyE, (b) the averaged colli-
02| 10 ¢ ° ., sion rates between particleN,
° (filled circles and between par-
0 — — : _ 1 - ' ' _ ticles and the floorN,, (open
107° 10°° 107 107 107 107° 107 107 circles, (c) the averaged contact
1/k, Vk, time fractions between particlés
(©) 1 (d) - (filled circles and between par-
0.6 ticles and the floort, (open
o & circles, and (d) the estimated
s . 2 ° multiple contact time fractiond,
< s 8 L 04} L0, —N7, (filed circles and t,
Iy o s * » o ] —N, 7 (open circles In (b) the
= PC . R 02b . .. : solid line proportional tok%* is
. ZI" ’ ° .. shown as a guide to the eye.
0.1 8 6 104 2 : .'-8 A6 e
10 10 10 10 10 10 10 10
1/k, Uk,

10(a); the data are scattered due to the nonuniqueness of tloan never be considered as many, or even infinite, instanta-
steady state. neous binary collisions. The particles experience the lasting
Nevertheless, the average collision rates show systematiaultiple contact even in the hard-sphere limit.
dependence as shown in Fig.(R0 Here, the definition of
N, (tc) is the same as that for the collisional flow, namely, it
is the average collision rat@ontact time fractionbetween
particlesper particle in the systemOn the other handy,,
(t,) is defined differently; it is the collision ratghe contact investigated numerically in the steady stateg(ipfa single
time fraction between the particles and the sloper par-  particle rolling down the slopgii) the dilute collisional flow,
ticle in the bottom layerbecause other particles never touchand (iii ) the dense frictional flow. Ir{i), it has been found
the slope. that the “inelastic collapse” between the particle and the
In Fig. 10b), we can see tha\l; (filled circles andN,,  slope occurs in the hard-sphere limit due to gravity, and the
(open circleg increase very rapidly ak,, becomes larger: contact time fraction between the particle and the slope re-
they diverge as a power &, . This is quite different from mains finite. In(ii), the collision rateN, andN,, are almost
the behavior in the collisional flow in which they are almost constant when particles are stiff enough. The contact time
constant. Furthermore, this increase is faster than the logdraction between particlels approaches zero ds, increase
rithmic divergence found in the single particle c@see Fig. in the same manner with the duration of contact for binary
3(b)]. collision, .. This means that the interaction between par-
The contact time fractions, (filled circles andt,, (open ticles in the hard-sphere limit can be expressed by binary
circles, decrease as shown in Fig.(&D The main reason collisions in the inelastic hard-sphere model. On the other
why t. andt,, decrease is that, and r,, decrease faster than hand, the decrease tg, is slightly slower than /k,, in the
N. and N,,, namely, the contact time fractions estimatedharder region, which can be a sign of the inelastic collapse
from the duration of a binary collisionN.7, and N, 7, between a particle and the slope.
continue to decrease. Actually, the decrease of the contact In the case of the frictional flowiii ), the situation is not
time fraction and the increase of the collision rate are naturasimple: Although the contact time fractioris and t,, de-
because a longer multiple contact breaks up into shorter berease upon increasink},, the collision ratesN. and N,
nary contacts as the particles become stiffer. increase as a power &f,, which is faster than the logarith-
These contact time fractiont, andt,,, however, donot  mic divergence found in the single particle cdbe The ori-
converge toN.7. andN,,7,,, respectively. As shown in Fig. gin of this power divergence of collision rate does not seem
10(d), t.— N7, (filled circles andt,,—N,7, (open circles to be simple because it is a property of the steady state, not a
are very large as compared to those in the collisional flowparticular dynamical trajectory of the system.
even in the stiffest region. The comparison of this with the The multiple contact time fraction may be estimated by
rapid convergence in the collisional flow regirfféig. 5d)]  t.— N7, andt,,—N,,7,. They were found to be quite large
indicates that there remains finite multiple contact time in thecompared to those for the collisional flow, and seems to re-
hard-sphere limit and the interaction in the frictional flow main finite even in the infinite stiffness limit: This suggests

IV. SUMMARY AND DISCUSSION

The inelastic hard-sphere limit of granular flow has been
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that the interaction in the frictional flow can never be con-continuously the parameters such as the inclination angle, the
sidered as infinite number of binary collisions. Even in theroughness of the slope, or the density of particles. It is inter-
hard-sphere limit, particles experience the lasting multipleesting to investigate how the transition occurs by looking at
contact. the quantities measured in this paper, because their stiffness
The non-negligible fraction of multiple contact in the dependences are qualitatively different in the two flows.
hard-sphere limit implies the existence of the network of
contacting grains even though they are flowing. The models
of dense flows should consider the effect of this lasting con-
tacts. This research was partially supported by Hosokawa pow-
Here we have investigated only the two cases, i.e., théler technology foundation, the Japan Society for the Promo-
collisional flow and the frictional flow. The system should tion of Science, and Grant-in-Aid from the Ministry of Edu-
undergo the transition between the two flows if we changecation, Science, Sports and Culture of Japan.
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